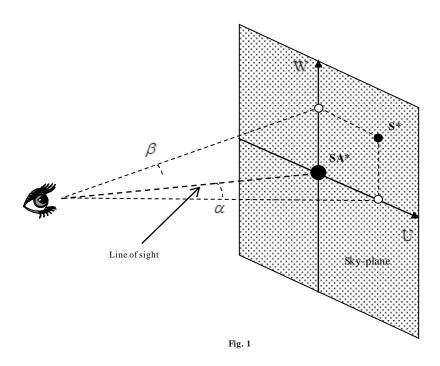


Problem 1 Black Hole in Milky Way

By observational facts, the scientists admit presence of a black-hole at the center of Milky Way. At the center of Milky Way, a hypothetical black-hole (Sagittarius A*) is located. A star S* is orbiting the black-hole SA*.


In the table 1 the following data is presented: the date and the angular position coordinates $(\alpha; \beta)$ of the star S* at different moments of the observation. The coordinates represent the angular distances of the projection or the star S* in the coordinates system (U, W), centered on the SA* (see figure 1).

An angular distance of $\varphi = 1$ arcsec corresponds to linear distance in the plane of the sky d = 41 light

days, therefore to a scale $S_0 = \frac{d}{\varphi} = 41 \frac{\text{light day}}{\text{arcsec}}$.

	Date (year)	$\alpha(arcsec)$	β (arcsec)
1	1995.222	0.117	- 0.166
2	1997.526	0.097	- 0.189
3	1998.326	0.087	- 0.192
4	1999.041	0.077	- 0.193
5	2000.414	0.052	- 0.183
6	2001.169	0.036	- 0.167
7	2002.831	- 0.000	- 0.120
8	2003.584	- 0.016	- 0.083
9	2004.165	- 0.026	- 0.041
10	2004.585	- 0.017	0.008
11	2004.655	- 0.004	0.014
12	2004.734	0.008	0.017
13	2004.839	0.021	0.012
14	2004.936	0.037	0.009
15	2005.503	0.072	- 0.024
16	2006.041	0.088	- 0.050
17	2007.060	0.108	- 0.091

By using the information provided your tasks are:

a) Plot the projection of the trajectory of the star S* in the plane P (see figure 2). This plane is close to the observer. In this plane, $\varphi = 1 \text{ arcsec}$ corresponds to a linear distance $d_0 = 1200 \text{ mm}$ therefore

$$S = \frac{d_0}{\varphi} = 1200 \frac{mm}{\text{arcsec}}$$

 $S = \frac{d_0}{\varphi} = 1200 \frac{mm}{\text{arcsec}}.$ You have to use the millimeter graph paper, carbon copy the scale is sheet of paper and the transparent sheets for an accurate plot.

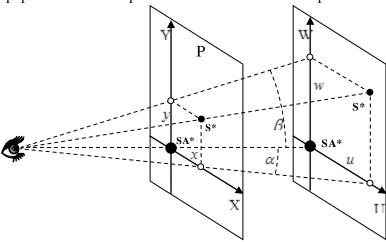


Fig. 2

b) By using the plot prove that the line of sight is normal to the actual plane of the orbit

- c) Using your plot find out following elements of the real orbit of star S^* around the black hole SA^* :
 - I. a—semi-major axis (in light days units); b—small semi-minor axis in (in light days units); e— eccentricity;
 - II. r_{\min} the minimum distance between S* and SA*(in light days units); r_{\max} the maximum distance between S* and SA* (in light days units);
 - III. The distance from the observer to the S*;
 - IV. the orbiting period of star S^* around SA^* (obtain the best possible result by taking as many measurements as possible and by taking their arithmetic mean);
 - V. the total mass of the system "SA* S*". Presenting the intermediate and final data in tables is recommended for an accurate evaluation.

$$G = 6.67 \cdot 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$$

Problem 2. Marking scheme Black Hole in Milky Way

- a) - b) - c)	15 points 5 points 30 points
\circ I	5 points
\circ II	5 points
o III	5 points
\circ IV	10 points
o V	5 points

Problem1		Punc	etaj
a)	Numeric calculations x,y	5p	
	Correct plot on the graph	5p	15p
	Elyps drawing	5p 5p 5p	
b)	A≅138 mm	1p	
	B ≅68 mm	1p	5p
	PC ≅120 mm		
	$c_{calculated} = \sqrt{A^2 - B^2} = 120,08 mm$	1p 2p	
c I)	$a = \frac{41A}{2} \approx 4.715 Id$	2p	
	$a = \frac{41A}{1200} \cong 4,715ld$ $b = \frac{41B}{1200} \cong 2,2965ld$	2p	5p
		1p	

	$e = \sqrt{1 - \frac{b^2}{a^2}} \cong 0.873$		
c II)	$r_{min} = \frac{d_{\min measured} 41}{1200} \cong 0,58ld$	2,5p	
	$r_{max} = \frac{d_{\max measured} 41}{1200} \cong 8,8ld$ $L = \frac{u}{\alpha} = \frac{w}{\beta}$	2,5p	5p
c III)	$L = \frac{u}{c} = \frac{w}{c}$	2,5p 3p	~
	$ \begin{array}{ccc} \alpha & \beta \\ L \cong 2318 ly \end{array} $	2p	5p
c IV)	$S_{elipsa} = \pi AB \cong 28560 mm^2$	2p	
	Numerical values $\Delta S_{12}, \Delta S_{23}, \dots$ merical values $\Delta t_{12}, \Delta t_{23}, \dots$	4p 1p	
	$T = \frac{S_{elipsa} \Delta t}{\Delta S}$	2p	10p
	$\overline{T}\cong 15~ani$	1p	
c V)	$T^2 = \frac{4\pi^2}{k(M_{0.45} + M_{0.5})} a^3$	3p	
	$\frac{1}{k(M_{SA^*}+M_{S^*})}u$		5p
	$M_{SA^*} + M_{S^*} \cong 4.6 \cdot 10^{36} kg \cong 2.5 \cdot 10^6 M_{\odot}$	2p	

Problem 2 Thermodynamic test

An hypotetical shuttle is launched to investigate the atmosphere (100% CO_2) of two extrasolar planets P_1 and P_2 . The atmosphere is in static thermodynamic equilibrium. When the shuttle is near each planet, a radio probe is launched toward respective planet, in vertical direction (in the direction of the planet's radius). When the radio probe reaches constant velocity, it starts sending values of the pressure of the atmosphere. In Fig. 3.1 is plotted the atmospheric pressure values (in arbitrary units) as function of the time of descent for the planet P_1 . When the probe touches the surface of planet P_1 it sends the value of the temperature $T_0 = 700 \, \text{K}$ and the value of the gravitational acceleration $g_0 = 10 \, \text{ms}^{-2}$.

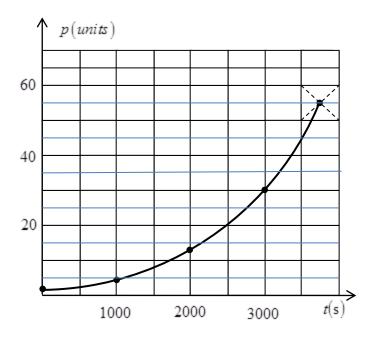


Fig. 3.1.

The gravitational acceleration on each planet is assumed to be constant during uniform descent of the radio probes.

- a) Find the altitude h_0 from where the radio probe R_1 starts the uniform descent and thus starts the transmitting information.
- b) Find the temperature of planet P_1 at the altitude h = 39.6 km. You know: The universal gas constant R = 8.3 J/molK; the molar mass of CO_2 , $\mu = 44$ g/mol.
- c) In Fig. 3.2.was plotted the atmospheric pressure values (in arbitrary units) as a function of time of descent for the planet P_2 atmosphere. When the probe touched the surface of the planet P_2 , it sends the value of the temperature $T_0 = 750 \,\mathrm{K}$ and respectively the value of gravitational acceleration $g_0 = 8 \,\mathrm{ms}^{-2}$

Draw the following dependency graphs for p = f(h) and T = f(h) in the CO_2 atmosphere of the planet P_2 .

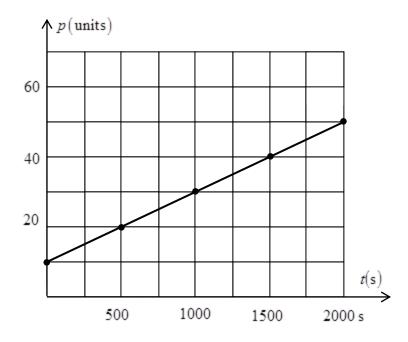


Fig. 3.2.

Problem 2. Marking scheme Thermodynamic test **50 points**

a.	10	Points
b.	20	Points 1
c.	20	points

Problem 3 IOAA Observer on an extrasolar planet

The Sirius star, located in the constellation of Canis Major, is the brightest star in the night sky of the Earth. What the observer's eye sees as a single star is actually a binary star system.

The high brightness of Sirius is a consequence of two facts: its intrinsic luminosity and its proximity to the Earth.

The Mizar multiple star system, in the constellation of Ursa Major, consists of 4 stars seen along the same line of sight from the Earth. Some of these stars form a gravitationally bound system.

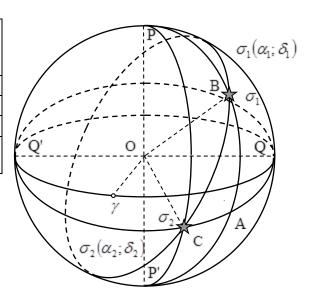
Let's assume that an observer (observer A) is located on one of the planets of the Sirius system. *Determine*:

- a) The magnitude of the Sun as seen by observer A $(m_{\text{Sun,Planet}})$.
- b) The magnitude of Sirius star system as seen by the observer A. $(m_{SY,Planet})$
- c) The combined intrinsic luminosity of the Mizar system, L_{Mizar} ;
- d) the average distance between gravitationally bound stars of the Mizar system and Earth,
- e) The geocentric angular distance between Mizar system and Sirius, $\Delta\theta$;
- f) The physical distance between the gravitationally bound stars of the Mizar system and the observer A. ($d_{
 m Mizar, Planet}$)
- g) The magnitude of the entire Mizar system as seen by the observer A. ($m_{\rm Mizar, Planet}$) Also estimate amount of errors in all your answers.

The following data may be used:

 $d_{\text{Sirius},Earth} = 2.6 \,\text{pc}$ - the Sirius – Earth distance;

 $m_{\text{Sirius } Earth} = -1.46^{\text{m}}$ - the apparent magnitude of Sirius measured from the Earth;


 $d_{Sun,Earth} = 1 \text{ AU}$ - the Sun – Earth distance;

 $m_{Sun,Earth} = -26,78^{\rm m}$ - the apparent magnitude of the Sun as seen from Earth;

 $d_{\text{Sirius Planet}} = 10 \,\text{AU}$ - distance between Sirius and its planet where the observer A is located;

In the table below information for the stars from the Mizar system as measured from the Earth is given.

Star	Name of the	Apparent	Parallax (mili
number	star	magnitude	arc seconds)
1	Alcor	3.99 ± 0.01	39.91± 0.13
2	Mizar A	2.23 ± 0.01	38.01± 1.71
3	Mizar B	3.86 ± 0.01	38.01± 1.71
4	Sidus	7.56 ± 0.01	8±4
	Ludoviciana		

The equatorial coordinates of Mizar system (σ_1) and respectively of Sirius (σ_2) , located on the heliocentric map are :

$$\alpha_{Mizar} = \alpha_1 = 13^{\text{h}} 23^{\text{min}} 55.5^{\text{s}}; \ \delta_{Mizar} = \delta_1 = 54^{\circ} 55' 31''; \ \alpha_{\text{Sirius}} = \alpha_2 = 6^{\text{h}} 45^{\text{min}}; \ \delta_{\text{Sirius}} = \delta_2 = -16^{\circ} 43'.$$

Note

$$ln(1-x) \approx -x \text{ for } x << 1$$

$$e^x \approx 1 + x$$
 for $x \ll 1$

Problem 3. Marking scheme Observer on an extrasolar star **50 points**

a.	6 Points
b.	6 Points
c.	8 Points
d.	8 Points
e.	8 Points
f.	6 Points
g.	8 Points

For each part 2 points will be given for calculating the errors

ADDREMA 3

361 a)
$$\frac{1}{3} \frac{1}{4\pi d_{xx}^{2}} = \frac{1}{3} \left(\frac{d_{xx}}{d_{xx}} \right)^{2} = 26 \frac{d_{xx}}{d_{xx}} = -0.4 \left(w_{xx} - w_{xx} \right) = 3$$
 $\frac{1}{5} \frac{1}{3} \frac{1}{$

		Participant was any	THE WEST CONTROL OF THE STREET		
	dre (UA)	Lx (45)	1	EL (2p)	
Alan	25,06 5140870	13,164	19	0,0867 Ls	
Misor A	26,32 5.429.34,6	73,364	19	6,62 Ls	/9
Mizar B	5.429.346	16,354	18	1,4216	1 =
Sidus	125,06 25.796.178	12,22 Ls	18	4,88 Ls	
			= *		
L= Lite	L2+L3+L4=11	15,09 Ls			3)
1				81 20	
d) dmase =	= 5,429.346	UA	Ep.	(212114 UA)	
e) cm 10 =	Cos (90-54° 55'31	") cos 80°+16°1	(31)+mi(90°	-54°55'31") in (95°+16°45'/cos(x,-az)	
4- × = 6	h 38 him 55,5 1.	~ 100 0	CUS (K-K	el = -0,1736.481777?	
$\delta_1 - \delta_2 = 71$	13831" ~ 71	,6° = 0 co	0(0,-04)	≥ 0,3156490369	
CO AD Z	-0,054811	8801 = 5	10 m 90	0	
A () = 109°			Lp	
$ \frac{1}{100} = \frac{100^{6}}{100^{6}} $ $ \frac{1}{100} = \frac{1}{100^{6}} $ $\frac{1}{100} = 1$					
dne dsym = 54293462+ (26.206265)2+ 2.5429346. 26.					
206265.0,055 =) dsym = 5.485.042 UA E dsyE SY Ed (242114 UA) = 26,55 pc 19.					
	E ZY	1 242119 0	77	= 26,59 pc /p.	

Generated by CamScanner from intsig.com

3)
$$A_1 H_{A_1} H_6 + SL$$

$$\frac{d_1}{d_1} d_2$$

$$E_A = \frac{L_1 + L_2 + L_3}{L_{12}} + E_2 = \frac{L_4}{L_{12}} d_2$$

$$E_M = \frac{L_1 + L_2 + L_3}{L_{12}} + \frac{L_4}{L_{12}} d_2$$

$$\frac{E_{M_1} = \frac{L_1 + L_2 + L_3}{L_{12}} + \frac{L_4}{L_{12}} d_2$$

$$\frac{E_{M_1} A_2}{E_{S_1} A} = -O_1 L_1 \left(M_{M_1} - M_{S_1} A_1 \right)$$

$$\frac{L_1}{L_1} + \frac{L_2}{L_1} + \frac{L_4}{L_{12}} d_2$$

$$\frac{L_3}{L_{12}} + \frac{L_5}{L_{12}} + \frac{L_5}{L_{12}} d_3$$

$$\frac{L_5}{L_{12}} + \frac{L_5}{L_{12}} + \frac{L_5}{L_{12}} d_3$$

$$\frac{L_5}{L_{12}} + \frac{L_5}{L_{12}} + \frac{L_5}{L_{12}} d_3$$